SHRI VENKATESHWARA UNIVERSITY

EVALUATION SCHEME

M.TECH (Structural Engineering)

PART-TIME

(Two Years Post Graduation Programme)

(w.e.f. 2019-20)

SCHOOL OF ENGINEERING & TECHNOLOGY

Evaluation for M.Tech	(Structural Eng	gineering-Part time)
	Dil uctul al Lil	

					SEI	MEST	ER-V						
SI.	Subject Codes	Subject	ıbject Periods Eva			Evaluat	ation Scheme		End Semester		Total	Credit	
No.			L	Т	Р	CT	TA	Total	PS	TE	PE		
1	WSE-051	Design of	3	0	0	20	10	30		70		100	3
		Prestressed											
		Concrete											
		Structures											
2	WOE-	Composite	3	0	0	20	10	30				100	3
	555	Materials								70			
3	WSE-	Dissertation	0	0	20				125		125	250	10
	521	Phase – I											
		Total										450	16
				•						•	•		•

M.TECH SE (Semester V) WSE-051 – Design of Advanced Concrete Structures (Credits - 3:0:0 = 3)

Teaching Scheme Lectures: 3 hrs/week

Course Outcomes: At the end of the course, students will be able to

- 1. Analyse the special structures by understanding their behaviour.
- 2. Design and prepare detail structural drawings for execution citing relevant IS codes.

Syllabus Contents:

- Design philosophy, Modeling of Loads, Material Characteristics.
- Reinforced Concrete P-M, M-phi Relationships, Strut-and- Tie Method, Design of Deep Beam and Corbel, Design of Shear Walls, Compression Field Theory for Shear Design, Design against Torsion; IS, ACI and Eurocode.
- Steel Structures -- Stability Design, Torsional Buckling Pure, Flexural and Lateral, Design of Beam-Columns, Fatigue Resistant Design, IS code, AISC Standards and Eurocode.

References Books:

- Reinforced Concrete Design, Pillai S. U. and MenonD., Tata McGraw-Hill, 3rd Ed, 1999.
- Design of Steel Structures, SubramaniamN., Oxford University Press, 2008.
- Reinforced Concrete Structures, Park R.and PaulayT., John Wiley & Sons, 1995.
- Advanced Reinforced Concrete Design, Varghese P. C., Prentice Hall of India, New Delhi.
- Duffied Theory of Concrete Structures, Hsu T. T. C. and Mo Y. L., John Wiley & Sons, 2010.
- Steel Structures Design and Behavior Emphasizing Load and Resistance Factor Design, Salmon C. G., Johnson J. E. and Malhas F. A., Pearson Education, 5th Ed, 2009.
- Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi.
- Plastic Methods of Structural Analysis, Neal B.G., Chapman and Hall London.

WOE- 555: COMPOSITE MATERIALS Course Type: Elective; Instruction: L-T-P-C: 3-0-0-3

<u>UNIT-I:</u> INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

<u>UNIT – II:</u> REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

<u>UNIT – III:</u> Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

<u>UNIT–IV:</u> Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT - V: Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain

criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

References:

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

WSE-521: DISSERTATION PHASE- I

Course Type: Core; Instruction: L-T-P-C: 0-0-20 (10)

Course Outcomes: At the end of the course, students will be able to

CO1	Define Research Problem Statement.
CO2	Critically evaluate literature in chosen area of research & establish Scope of work.
CO3	Develop Study Methodology.
CO4	Carryout Pilot Study. ed Syllabus:

There is no prescribed syllabus. Students are required to search, collect and review various research articles published in chosen area of research. A student has to select a topic for his dissertation, based on his/her interest and the available facilities at the commencement of dissertation work. A student shall be required to submit a dissertation report on the research work carried out by him/her.

READING:

- 1. Conference / Seminar Proceedings.
- 2. Derek Swetnam, Writing Your Dissertation, 3rd Edition, Oxford, UK, 2004.
- 3. Handbooks / Research Digests.
- 4. Journal Publications.